Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrical properties of vacuum-annealed titanium-doped indium oxide films

Identifieur interne : 000890 ( Chine/Analysis ); précédent : 000889; suivant : 000891

Electrical properties of vacuum-annealed titanium-doped indium oxide films

Auteurs : RBID : Pascal:11-0499883

Descripteurs français

English descriptors

Abstract

Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited amorphous ITiO films obtained at 20 W began to crystallize at the annealing temperature of 155°C. Although there was no significant change in the crystalline structure of the films, electron mobility improved gradually with further increase in the annealing temperature. After post-annealing at 580°C, the highest electron mobility of 50 cm2 V-1 s-1 was obtained. Compared with the amorphous ITiO films, the ITiO films with a certain degree of crystallinity obtained at high deposition power were less affected by the vacuum annealing. Their electron mobility also improved due to post-annealing, but the increase was insignificant. After post-annealing, the optical transmission of the 325 nm-thick ITiO films showed approximately 80% at wavelengths ranging from 530 to 1100 nm, while the sheet resistance decreased to 10 Ω/sq. This makes them suitable for use as transparent conductive oxide layers of low bandgap solar cells.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0499883

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Electrical properties of vacuum-annealed titanium-doped indium oxide films</title>
<author>
<name sortKey="Van, L T" uniqKey="Van L">L. T. Van</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Science, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rath, J K" uniqKey="Rath J">J. K. Rath</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, P.O. Box 80.000, Utrecht University</s1>
<s2>3508 TA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schropp, R E I" uniqKey="Schropp R">R. E. I. Schropp</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, P.O. Box 80.000, Utrecht University</s1>
<s2>3508 TA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<placeName>
<settlement type="city">Utrecht</settlement>
<region nuts="2">Utrecht (province)</region>
</placeName>
<orgName type="university">Université d'Utrecht</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0499883</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0499883 INIST</idno>
<idno type="RBID">Pascal:11-0499883</idno>
<idno type="wicri:Area/Main/Corpus">002573</idno>
<idno type="wicri:Area/Main/Repository">003041</idno>
<idno type="wicri:Area/Chine/Extraction">000890</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0169-4332</idno>
<title level="j" type="abbreviated">Appl. surf. sci.</title>
<title level="j" type="main">Applied surface science</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Amorphous state</term>
<term>Annealing</term>
<term>Cathode sputtering</term>
<term>Crystal structure</term>
<term>Crystallinity</term>
<term>Doped materials</term>
<term>Electron mobility</term>
<term>Energy gap</term>
<term>Film growth</term>
<term>Glass</term>
<term>Indium oxide</term>
<term>Inorganic compounds</term>
<term>Magnetrons</term>
<term>Sheet resistivity</term>
<term>Solar cells</term>
<term>Sputtering</term>
<term>Thick films</term>
<term>Titanium additions</term>
<term>Transition element compounds</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Recuit</term>
<term>Composé minéral</term>
<term>Composé de métal de transition</term>
<term>Addition titane</term>
<term>Matériau dopé</term>
<term>Verre</term>
<term>Croissance film</term>
<term>Pulvérisation cathodique</term>
<term>Magnétron</term>
<term>Etat amorphe</term>
<term>Structure cristalline</term>
<term>Mobilité électron</term>
<term>Cristallinité</term>
<term>Spectre absorption</term>
<term>Couche épaisse</term>
<term>Résistivité couche</term>
<term>Bande interdite</term>
<term>Cellule solaire</term>
<term>Pulvérisation irradiation</term>
<term>Oxyde d'indium</term>
<term>7361</term>
<term>7820C</term>
<term>8140E</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Composé minéral</term>
<term>Verre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited amorphous ITiO films obtained at 20 W began to crystallize at the annealing temperature of 155°C. Although there was no significant change in the crystalline structure of the films, electron mobility improved gradually with further increase in the annealing temperature. After post-annealing at 580°C, the highest electron mobility of 50 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
was obtained. Compared with the amorphous ITiO films, the ITiO films with a certain degree of crystallinity obtained at high deposition power were less affected by the vacuum annealing. Their electron mobility also improved due to post-annealing, but the increase was insignificant. After post-annealing, the optical transmission of the 325 nm-thick ITiO films showed approximately 80% at wavelengths ranging from 530 to 1100 nm, while the sheet resistance decreased to 10 Ω/sq. This makes them suitable for use as transparent conductive oxide layers of low bandgap solar cells.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0169-4332</s0>
</fA01>
<fA03 i2="1">
<s0>Appl. surf. sci.</s0>
</fA03>
<fA05>
<s2>257</s2>
</fA05>
<fA06>
<s2>22</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Electrical properties of vacuum-annealed titanium-doped indium oxide films</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>VAN (L. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RATH (J. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SCHROPP (R. E. I.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Science, Beijing Jiaotong University</s1>
<s2>Beijing 100044</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Nanophotonics - Physics of Devices, Debye Institute for Nanomaterials Science, Faculty of Science, P.O. Box 80.000, Utrecht University</s1>
<s2>3508 TA Utrecht</s2>
<s3>NLD</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>9461-9465</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>16002</s2>
<s5>354000508942530390</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>10 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0499883</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied surface science</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Titanium-doped indium oxide (ITiO) films were deposited on Corning glass 2000 substrates at room temperature by radio frequency magnetron sputtering followed by vacuum post-annealing. With increasing deposition power, the as-deposited films showed an increasingly crystalline nature. As-deposited amorphous ITiO films obtained at 20 W began to crystallize at the annealing temperature of 155°C. Although there was no significant change in the crystalline structure of the films, electron mobility improved gradually with further increase in the annealing temperature. After post-annealing at 580°C, the highest electron mobility of 50 cm
<sup>2</sup>
V
<sup>-1</sup>
s
<sup>-1</sup>
was obtained. Compared with the amorphous ITiO films, the ITiO films with a certain degree of crystallinity obtained at high deposition power were less affected by the vacuum annealing. Their electron mobility also improved due to post-annealing, but the increase was insignificant. After post-annealing, the optical transmission of the 325 nm-thick ITiO films showed approximately 80% at wavelengths ranging from 530 to 1100 nm, while the sheet resistance decreased to 10 Ω/sq. This makes them suitable for use as transparent conductive oxide layers of low bandgap solar cells.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C61</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H20C</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A40E</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Recuit</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Annealing</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Composé minéral</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Inorganic compounds</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Composé de métal de transition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Transition element compounds</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition titane</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Titanium additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Verre</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Glass</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Croissance film</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Film growth</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Pulvérisation cathodique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Cathode sputtering</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Magnétron</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Magnetrons</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Etat amorphe</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Amorphous state</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Structure cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Crystal structure</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Mobilité électron</s0>
<s5>13</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Electron mobility</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Cristallinité</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Crystallinity</s0>
<s5>14</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Cristalinidad</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Couche épaisse</s0>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Thick films</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Résistivité couche</s0>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Sheet resistivity</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Cellule solaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Solar cells</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Pulvérisation irradiation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Sputtering</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>21</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>7361</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>45</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>7820C</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8140E</s0>
<s2>PAC</s2>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fN21>
<s1>346</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000890 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000890 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0499883
   |texte=   Electrical properties of vacuum-annealed titanium-doped indium oxide films
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024